首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
化学工业   7篇
金属工艺   11篇
机械仪表   7篇
能源动力   2篇
石油天然气   1篇
无线电   2篇
一般工业技术   3篇
自动化技术   2篇
  2023年   5篇
  2022年   3篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
As one of the representative unsupervised data augmentation methods, generative adversarial networks (GANs) have the potential to solve the problem of insufficient samples in fault diagnosis of rotating machinery. However, the existing unsupervised GANs are usually incapable of simultaneously generating multi-mode fault samples and have some shortcomings such as mode collapse and gradient vanishing. To overcome these deficiencies, a supervised model called modified auxiliary classifier GAN (MACGAN) designed with new framework is proposed in this paper. Firstly, a new ACGAN framework is developed by adding an independent classifier to improve the compatibility between the classification and discrimination. Secondly, the Wasserstein distance is introduced in the new loss functions to overcome mode collapse and gradient vanishing. Finally, to achieve stable training, a spectral normalization is used to replace the weight clipping to constrain the weight parameters of discriminator. The proposed method is applied to fault diagnosis of bearing and gear. Compared with the existing GANs, the proposed method can more efficiently generate multi-mode fault samples with higher qualities, which can be used to assist the training of deep learning-based fault diagnosis models with high accuracy and good stability.  相似文献   
2.
The purpose of the present work was to compare the cutting action of two different abrasive-grain geometries using experimental observations and a validated finite element model. A spherical tool was used to approximate a dull abrasive grain while a truncated cone tool was used to approximate an abrasive grain with a well defined cutting edge. The selected geometries were chosen to represent extreme cases in order to bracket the cutting action of a range of cutting geometries. The results showed that both tools produced similar normal and tangential forces per unit width up to a depth of cut of approximately 3 μm. The improved cutting geometry of the truncated cone tool caused the normal force per unit width to decrease and the tangential force per unit width to increase in relation to the spherical tool. The truncated cone tool was shown to experimentally and numerically be more efficient based on the reduced pile-up heights and improved stress distributions. It was also shown that both geometries converged towards the same specific energy to displace material at suitably large depths of cut, which suggests that there is a minimum specific energy obtainable for a given workpiece material that is independent of the grain geometry. However, specific energies to remove material were higher for the spherical tool as compared to the truncated cone tool. Analysis of the energy components of the finite element model showed that frictional energy contributions were high with the spherical tool and low with the truncated cone tool. Finally, it was found that both tools required approximately the same energy to shear a chip from a workpiece when friction was subtracted from the specific energy for material removal.  相似文献   
3.
Micro electro discharge machining (micro EDM) is suitable for machining micro holes on metal alloy materials, and the micro holes can be machined even to several microns by use of wire electro discharge grinding (WEDG) of micro electrodes. However, considering practicability of micro holes <Φ100 μm in batch processing, the controllable accuracy of holes’ diameter, the consistency accuracy of repeated machining and the processing efficiency are required to be systematically improved. On the basis of conventional WEDG method, a tangential feed WEDG (TF-WEDG) method combined with on-line measurement using a charge coupled device (CCD) was proposed for improving on-line machining accuracy of micro electrodes. In TF-WEDG, removal resolution of micro-electrode diameter (the minimum thickness to be removed from micro electrode) is greatly improved by feeding the electrode along the tangential direction of wire-guide arc, and the resolution is further improved by employing negative polarity machining. Taking advantage of the high removal resolution, the precise diameter of micro-electrode can be achieved by the tangential feed of electrode to a certain position after diameter feedback of on-line measurement. Furthermore, a hybrid process was presented by combining the TF-WEDG method and a self-drilled holes method to improve the machining efficiency of micro electrodes. A cyclic alternating process of micro-electrode repeated machining and micro holes’ drilling was implemented for array micro holes with high consistency accuracy. Micro-EDM experiments were carried out for verifying the proposed methods and processes, and the experimental results show that the repeated machining accuracy of micro electrodes was less than 2 μm and the consistency accuracy of array micro holes was ±1.1 μm.  相似文献   
4.
《Ceramics International》2019,45(12):14908-14920
To address the current bottleneck of debris formation mechanism in plastic removal for hard-brittle materials, a minimum chip thickness (hmin) model that considers lubrication conditions (represented by frictional angle β) is developed according to strain gradient, as well as geometry and kinematics analyses. Model results show that hmin decreases with increasing β. Furthermore, grinding experiments using single diamond grain under different lubricating conditions are carried out to verify the model. With increasing β, hmin values are 71.6, 57.8, 52.0, 50.7, 45.6, 39.7, and 32.4 nm, thereby verifying the trend of hmin decreasing with increasing β. Furthermore, the location of size effect occurs is determined according to the variation trend of single abrasive particle specific energy and unit grinding force curves. The size effect occurs in the border area of ploughing, the cutting region, and mainly, in the ploughing region. Theoretical analysis results are consistent with experimental results with a model error of 6.06%, thereby confirming the validity of the theoretical model.  相似文献   
5.
Nowadays the increasing interest to perform machining operations is in dry/near-dry environments. The reason includes health and safety of operator, cost, ease of chip recyclability, etc. However one important process, which is difficult to perform in dry, is drilling. Without coolant, drilling leads to excessive thermal distortion and poor tool life. In order to tackle these conflicting requirements, the essentiality of study on machining performances with minimum quantity lubricant (MQL) becomes important.Fuzzy logic rules, which are derived based on fuzzy set theory, are used to develop fuzzy rule based model (FRBM). The performance of FRBM depends on two different aspects: structures of fuzzy rules and the associated fuzzy sets (membership function distributions, MFDs). The aim of this study is to investigate the performances of FRBMs based on Mamdani and TSK-types of fuzzy logic rules with different shapes of MFDs for prediction and performance analysis of machining with MQL in drilling of aluminum alloy. A comparison of the model predictions with experimental results and those published in the literature shows that FRBM with TSK-type fuzzy rules describes excellent trade-off with experimental measurements.  相似文献   
6.
目前对于煤系地层天然气井所配套有杆泵泵阀动力特性的研究,主要是移植和借鉴常规油气井抽油泵泵阀的分析方法,多针对油气井开采较高的沉没度,并没有考虑低沉没度和大斜度工况下的泵阀动力学和水力摩阻等参数的影响,也没有揭示水平井泵阀顺利开启所需要的具体条件。为此,综合考虑低沉没度和大斜度等因素耦合的影响,推导造斜段泵阀随井液运动微分方程组,建立有杆泵井液流经泵阀阀隙水力摩阻数学模型,基于数值模拟的方法研究了水平井泵阀动力学、水力摩阻与临界沉没度。研究结果表明:①低沉没度和大斜度耦合作用下,增大冲程和冲次会提高造斜段泵阀阀球的升程、速度和加速度,缩短加速度趋向平缓所用的时间,并且水平井泵阀开启瞬间阀球会出现短暂的周期性波动;②受弹簧力与阀球重力的双重作用,水平井有杆泵的临界沉没度明显低于直井工况且固定阀球伴随弹簧快速复位,这有利于顺利开启水平井的游动阀球和固定阀球并提高泵效;③增大冲程、冲次和泵径会使水平井有杆泵井液流经泵阀水力摩阻及其临界沉没度变大,并且增大冲程更有利于提高低流速井液入泵流速,但同时也会显著地提高临界沉没度。结论认为,该研究成果对于保障煤系地层天然气井连续稳定排采和提高有杆泵的可靠性都具有重要的参考意义。  相似文献   
7.
《Ceramics International》2017,43(15):11973-11980
High efficiency and precision grinding of brittle materials is challenging due to material physical and chemical properties. To understand the effect of grain geometry and wear conditions on the material removal mechanism in brittle material precision grinding, a single diamond grain grinding experiment was conducted on Silicon Carbide (SiC). The cutting edge radius and deflection angle were measured by confocal scanning. Under six different cutting edge radius and three maximum undeformed chip thickness, grinding force and ground surface were measured. Diamond grain wear was investigated by observing the grain morphology, wear rate, grinding force, and ground surface change over accumulative material removal volume. The result showed the existence of a critical cutting edge radius for improving SiC ground surface quality.. Normal grinding force increased with the cutting edge radius increase. Tangential grinding force increased with the cutting edge radius increase and reached the peak value at the critical cutting edge radius. Flank wear was the major wear mode in precision SiC grinding. The grain wear was associated with the grinding force and ground surface.  相似文献   
8.
《Ceramics International》2022,48(6):8314-8324
At present, many scholars are experimentally investigating the grinding performance of ceramic matrix composites (C–SiCs). However, accurately reflecting the microscopic mechanisms of crack initiation and extension and the material removal mechanism (MRM) is difficult. To research the micro-MRM of C–SiCs, a theoretical model (TTM) and a numerical simulation model (NSM) were established in this study and were proven to be reliable by experiments. The TTM was established according to the kinematics and dynamics of a single abrasive particle. In the procedure of establishing the NSM, the SiC matrix (SiCM) and carbon fibre reinforcement (CFRT) were each modelled based on the internal structure characteristics of C–SiCs and then combined by an interface layer. The TTM, NSM and verification experiments all showed that fibre pull-out, fibre outcrop, matrix cracking and interfacial debonding were the basic defects in the C–SiCs. As the grinding depth (ap) increased, the grinding performance of the C–SiCs gradually deteriorated. The material removal characteristics of C–SiCs can be directly modelled at the microlevel by the NSM. The NSM showed that the grinding force fluctuated periodically because the CFRT and SiCM have different properties. High stresses occurred mainly in the SiCM. This research can supply a scientific basis for understanding the micro-MRM of C–SiCs and provide important guidance for the high-quality grinding of C–SiCs.  相似文献   
9.
Applying cutting fluid in a metal-cutting process can reduce the rate of tool wear and improve surface quality. However, cutting fluid has negative effects on the working environment and the use of cutting fluid also increases the total production cost. Therefore, there is a need to reduce the use of cutting fluid during machining. To serve that purpose, a minimal-cutting-fluid technique was studied. In the present work the cutting fluid was applied in a form of a high-velocity, narrow, pulsed jet at a rate of 2 ml/min. The performance of machining with pulsed-jet application was studied in high-speed milling of hardened steel, compared to dry machining and machining with flood application. The results clearly show that compared to dry machining and machining with flood application, machining with pulsed-jet application lowers cutting forces, reduces tool wear, increases tool life, and improves surface roughness, especially when machining with high cutting velocity. Moreover, the amount of cutting fluid consumed at the rate of 2 ml/min is a drastic reduction compared to flood application. Also, no harmful oil mist is generated during the pulsed-jet application. In conclusion, the pulsed-jet application can be applied to milling process of hardened steel using ball end mills; it reduces the negative effects to the environment, improves machining performances, and consequently reduces total production cost.  相似文献   
10.
Vegetable oil is a low toxic, excellent biodegradable and renewable energy source used as an ideal lubricating base oil in machining. Castor oil exhibits good lubrication performance but poor mobility, which limits its application especially in precision grinding. The main objective of the work presented to obtain optimal mixed vegetable based-oil and optimal nanoparticles adding concentration in grinding Ni-based alloy with minimum quantity lubrication. An experimental investigation is carried out first to study the different vegetable oils with excellent mobility mixed with castor oil. The lubrication property of the oil was evaluated in terms of grinding force, force ratio, specific grinding energy, and surface roughness. Based on the test conditions, it is found that soybean/castor mixed oil obtained the optimal results (μ= 0.379, U = 83.27 J/mm3 and Ra = 0.325 μm) and lubricating effect compared with castor oil and other mixed base oils. To further explore the lubricating capability of soybean/castor mixed oil, MoS2 nanoparticles which have excellent lubricating property were added into the soybean/castor mixed oil to prepare different concentrations nanofluids. From the present study, it can be concluded that 8% mass fraction of the oil mixture should be added to obtain the optimal machining results, with the lowest force ratio (0.329), specific energy (58.60 J/mm3), and average grinding temperature (182.6 °C). Meanwhile, better surface microtopography of ground parts and grinding debris morphologies were also observed for the machining conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号